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Abstract— Various mechanisms for fault-tolerance (FT) are execution platform characteristics. There is no one-fige-
used today in order to reduce the impact of failures on appliation | solution. For instance, today’s efficient checkpoidtart
execution. In the case of system failure, standard FT mech#ms  gchemes may be unsuitable for peta-flop machines with their
are checkpoint/restart (for reactive FT) and migration (for . - .
pro-active FT). However, each of these mechanisms create an'NaSSIVE node counts [1] [2]. \_(et, itis pF)SSIb|e that othd!n-so
overhead on application execution, overhead that for instace tions may be worse, thus making a particular checkpoiréres
becomes critical on large-scale systems where previous dias scheme the only feasible solution for such a system. The poin
have shown that applications may spend more time checkpoiitty s that it is impossible to arrive at any conclusion without a
state than performing useful work. , Proper evaluation and comparison with candidate solutions

In order to decrease this overhead, researchers try to bot A hall f h is theref to find
optimize existing FT mechanisms and implement new FT poli€is. new challenge for researchers Is therefore to find ap-

For instance, combining reactive and pro-active approache in Propriate fault tolerance policies for specific applicacand
order to decrease the number of checkpoints that must be execution platforms. This document presents a step in that
performed during the application’s execution. However, curently  direction, presenting a simulator for FT policies. This sia
no solutions exist which enable the evaluation of these FT 4 gj0ws one to evaluate the impact of various FT policies
approaches through simulation, instead experimentationsmust licati i b d h teristi f tath
be done using real platforms. This increases complexity anlimits on app Ication execution, based on characterislics o .
experimentation into alternate solutions. execution platform (e.g. number of nodes), FT mechanisms
This paper presents a simulation framework that evaluates (e.g. their overhead), and applications (e.g. executioe)ti

different FT mechanisms and policies. The framework uses  This presented framework provides a tool for research into
system failure logs for the simulation with a default behawr 5,1t tolerance based on simulation, which removes the ddde
based on logs taken from the ASCI White at Lawrence Livermore lexit iated with L tation i d bykv
National Laboratory. We evaluate the accuracy of our simulaor comp ex_' y associated with experimentation incurred bykwo
comparing simulated results with those taken from experimats ~ done using a real platform.
done on a 32-node compute cluster. Therefore such a simulato  The remainder of this paper is organized as follows. We
can be used to develop new FT policies and/or to tune existing present the background of the proposed research work in the
policies. Section Il including various FT policies that are generathed

I. INTRODUCTION on real systems. In _Se_ction II_I, we deS(_:ribe our siml_JIf_;\tor,
High ‘ i ¢ il i ollowed by an analysis in Section IV of different FT polisie
tod 'g, ﬂgrﬁrmznce f[:ompu ng sysfems tgrow ralpl ty’ Wl ased on failure logs from Lawrence Livermore National
odays high-end systems moving from tera-scaie 1o petJ"_"éboratory (LLNL). Section V shows the validation of the

scalg Cl.ass platiorms. As thgse s_ystems INCTEAse N SIgy jator. Lastly, Section VI presents our conclusion.
the likelihood of component failure increases greatly, alhi

ultimately leads to higher application level failures (tadly Il. BACKGROUND

parallel applications). applications). A. Standard Fault Tolerance Policies

A standard policy to address this issue is to periodically The main goal of a FT policy is to reduce the loss of an

checkpoint applications and in the event of a failure réstar_ .~ .. ", . . :
. C . .~ application’s work time or reduce the execution overhead in
the application. A more recent policy is to pro-actively @vo

failures, moving parts of the application away from nodes f(:)he presence of failures. In this section we explain theoueri
which a failure has been predicted. This latter approacwll acets of a few standard FT policies, which were used to guide

one to avoid the impact of system failures on a I'cat'otrn]e implementation of our simulator.
Vol Imp y hu PPICALON \\o make the following assumptions in order to represent

execution. Unfortunately, it assumes failures are pradiet articular FT policy: (i) An HPC system has an unknown
which may not be the case, depending on applications and %’gBF (Mean Time Between Failures), i.e., all failures occur

* ORNL's work was supported by the U.S. Department of Energylen a_lccording to some unkn_own value for MTBF; (ii) an applica-
Contract DE-AC05-000R22725. tion completes aftek failures.



Let the lost work time or execution overhead be representprkdicted correctly out om failures that are subject to a
by L, and the application’s original run time be equakta 50% prediction accuracy can be calculated as follows:

mtbf. .
1) Exclusive Reactive Fault Toleranc&he central idea of (m n) x(m—n+1)
the exclusive reactive fault tolerance policy is to periadly p= wheren > n (6)
checkpoint applications. The main parameters of this polic (2m)
are: (i) the checkpoint interval; (ii) the associated oeexth m

for the application or checkpoint latency; (iii) the “time t  3) Reactive and Proactive Fault Toleranc&he fundamen-
checkpoint”, i.e., the average time to complete one cheiokpo tal premise behind the reactive and proactive fault tolegan
and (iv) rollback time due to application failure. Efficientyolicy is to acknowledge that all failures cannot be prestict
checkpoint/restart schemes try to minimize the overhead fgnd therefore this policy combines (i) periodic checkpgiat
the application by parallelizing the checkpoint writingpess. active), and (ii) failure prediction with migration (praae).
However, the longer it takes to complete a checkpoint, t®r failures that are predicted, applications can be megrat
higher the probability a failure will occur during this stat thus saving the rollback time and restart latencies. Féurtss
saving period. This policy also depends on the availabdity that cannot be predicted, applications are restarted fimm t

nodes to restart a failed application. Further, restaeniey (in  |ast checkpoint thereby reducing re-computation by avgjdi
the case of synchronized checkpoint/restart) is anothérceo starting from scratch.

of application overhead. The execution overheall in this case can be represented in
Let  be the associated overhead to the application fornauch the same way as in the case of “exclusive reactive FT”.
single checkpoint and be the time to checkpoint. The difference is that the MTBF gets stretched based on the
failure prediction accuracy. Lets assume the failure tesh
z=mtbf — LLI)JCJ * (interval —n) ) i to ber (th id
= interval & n inaccuracy to ber (the accuracy id — x)
1
L = oo if interval > mtbf 2 mtbf’ = 2 mtb f (")
n The Lost time or execution overheadcan then be represented
L= Zz for interval < mtbf (3) using Equation 3.

i=1 4) Proactive Triggered Reactive Fault Tolerancerhe

The Equation 3 is only a partial result for the lost time. ThRro2active triggered reactive fault tolerance policy isdisaien
Equation 3 characterizes lost time fer MTBFs. The lost applications are only checkpointed when failures are ptedi
time L can lead to more lost time i is greater thanntb . This is an alternative when migration overhead exceeds the

Therefore, L can be approximated to a multiple of MTBF’checkpoint/restart overhead. In that case, the applitdbises

which can be then evaluated using Equation 3. n+x/100xmtbf for the firstn MTBFs atz percent prediction
2) Exclusive Proactive Fault ToleranceThe basic tenet Maccuracy. x
of the exclusive proactive fault tolerance policy is to peed t= 100 (8)

'”?per_‘d'”g _system fa"““?s Whergver possible and avoid a‘Pﬁerefore, the total lost time is a geometric series witle rat
plication failures by moving running processes/threadayaw

from the compute node that is about to fail. The policy hasa

high overhead to applications when failures are not predict o0 _

since applications restart from scratch (no checkpoistire L =mtbf « Z nxt 9
mechanisms). The policy depends on failure prediction-accu i=1

racy, migration overhead for the application, false alaate,r nt

and availability of spare nodes for migration. L =mitbf 1—¢ (10)

The following example illustrates such a policy. Let th
prediction accuracy be equal to 50% (i.e. 50% of the predict%' Related Work

failures are false prediction) and g(x) gives the number of Our proposed research on simulation of FT policies has
failures that are correctly predicted. two basic components. So we present related work on both

the components. Many simulation studies [3] [4] [5] evatuat
, the impact on metrics such as job turnaround time, average
L= Zg(z) *mtbf xp (4)  wait time, and average slowdown time, for various parallel
=1 job scheduling policies in the presence of system failupas,
wherel < g(z) <n—1andwherel <z < k—1 (5) fault tolerant (FT) mechanisms/policies are not explored t
find their impact on the same metrics. The authors in [6]
In this case, an application will only complete its execntiopropose a parallel simulator to compare various techniques
if n consecutive failures with MTBF equal teutbf are for task allocation to multiple processors where procesaos
predicted. The probability that n consecutive failures are subject to failures. Although this study evaluates the io®tr

k—1



such as job execution times, the objective of the authors is

not to evaluate the impact of fault tolerant mechanismsr&he

have been efforts to study software dependability or failur

behavior through simulation. Such efforts [7] [8] inject or Global Schema
simulate software or hardware failures that affect sofeatar Ay SR
evaluate the impact of various fault-tolerant strateg@imer

et al. in [9] study the performance implications of periodic
checkpoints through simulation. Oliner et al. use LLNL'slre
system logs for their study. Our goal is to study and evaluate Failure Logs

different FT policies and not just periodic checkpoint. Aba events
et al. [10] [11] study performance metrics such as resource

utilization, job slowdown, for scheduling strategies aiod fior
fault-tolerant mechanisms.

The research on FT policies can be broken down into four
policies as discussed in Section 1l-A. The research in react
FT policies ranges from fault tolerant MPI [12], to faultéol
ant schedulers [13], to projects likiéja vu[14] and numerous

checkpoint/restart schemes [15], [16] The research ingih@a gppjication process/thread is executed on each node and tha
FT policies can be broken down into failure prediction anghe node count of an application remains static throughout
migration. Hardware failure prediction is studied well imet jig lifecycle. For instance, in the case of proactive FT, we
literature [17], [18], [19] ranging from node failures tosdi |et the application fail if there is no spare node available
failures to IPMI logs. In [20], the authors explain how @@l fo; migration. One can easily extend the simulator to allow

events can be predicted for pro-active management. In [2Qhcked processes by introducing a “stacked overheadein th
Chakravorty and Kale explain how pro-active fault tolemno=T policies schema (please see Listing 3).

based on processor failure information can lead to mignatio

of tasks from faulty processors to healthy nodes. Software Listing 1. Application schema as needed by the simulator
rejuvenation along with checkpointing has been used inf@1]<App schema

minimize the application execution time pro-actively. THE <Application ID>...</Application ID>
policy of proactive combined with reactive policy is relatiy <Execution time-...</Execution time
less explored. But in [22] they describe how pro-active tfaul <Node count...</Node count
management can be used to decide whether to migrate theApp schema

process or whether to checkpoint it.

Select FT
policy

Application
Overhead
results

Node schema

FT Policies

events

Completion
of
application

Fig. 1. Global Architecture of the Simulation Framework

[1l. SIMULATION FRAMEWORK B. Node Schema

Figure 1 shows the architecture of the simulator and how '€ node schemas shown in Listing 2 stores m_fprmatmn
a particular simulation is performed. In our framework, thguch as th? .number of spare r,10des. The availability O.f spare
simulated system is defined by a setsohemasFor instance, nodgs is crlltlcal for application’s overall overhead as wi# w
different schemas define the application, the compute nodes® N Section IV.
the FT policy and the failures (each individual schema are Listing 2. Node schema as needed by the simulator
explained in detail in later sections). Doing so, it is pbksi

. ) . ; o : <Node schema

to easily customize the S|mulat|(_)n, mod|fy|ng the d|ffetren <Total nodes...</Total nodes
fhzagasrsgftresdO;Tesg:;c;chema. It is also possible to fine-tune <Active nodes ...</Active nodes

Each individual schema contains information about a sp§7No<d§p§£ﬁe:1;deE' --</Spare nodes
cific element of the simulation. The simulator finds all the
needed information via the schemas. As described in the next
section, the configurable parameters could be the numberCof
applications, number of nodes per application, total npdes The FT policies schemahown in Listing 3 lists all sup-
spare nodes, repair time, various overheads (such as chegmkied FT policies by the simulator. The schema also dessrib
point/migration/latencies), and various FT policies (suas the different overheads associated to each policy. Foariicst,

Fault Tolerance Policies

proactive/reactive and failure logs). the overheads in the schema could be “checkpoint overhead”
o or “migration overhead” or “Restart latency”. The event-ele
A. Application Schema ment specifies the event on which a particular policy shoeld b

Listing 1 describes thapplication schemas used by the invoked. For instance, reactive policy should only be ireak
simulator. Node count is the actual processor count of thahen the failure event occurs. Similarly, the proactiveigol
particular application. We currently assume that only oraust be invoked when failure is predicted.



TABLE |

Listing 3. FT policies schema as needed by the simulator INFORMATION FROMLLNL’ S LOGS

<FT policies schema

<policy> [ Parameter [ Description |
<Name-Reactive:/Name- Failure time Time when failure occurred
<event...<event Downtime (MTTR)Downtime of a node
<Overhead® ...</Overhead® Node id Failed node information

<Overhead2 ...</Overhead2
<Overhead3...</Overhead3

</ policy> 1) Failure Event: (i) extract information about the failed

<policy> application from the application schema and the failureslog
<Name-Proactive</Name- schema, (i) check event dependences (such as “repair of
<event-...<event- nodes”), (iii) reorder events in chronological order, (ig)ease
<Overhead®...</Overhead® jobs in queue and calculate overheads (such as loss of work
<Overhead2...</Overhead2 time) based on past events, (v) execute the FT policy, (vi)

</ policy> update node lists for the failed applications.

</FT policies schema 2) Repair Event:(i) add node(s) to free/spare list.

3) Completion Event{(i) release the nodes held by job to
free/spare list

4) Actions Based on FT Policy(i) query schema for

Thefailure log schemayives the details about each failuresupport, (ii) calculate overheads listed in the FT policies
Specifically, it contains information about failure eveng., schema, for example calculate checkpoint overhead if the FT
the duration of the event (Mean Time To Recover - MTTRROolicy is reactive or calculate migration overhead if théigyo
the node affected, whether the failure was predictable. Tiseproactive.

predictability information is used by policies such as the
proactive one. IV. CASE STUDY USING LOGS FROMLLNL

D. Failure Logs

In this section we evaluate standard FT policies listed in

Listing 4. Failure | h ded by the simulat . X . .
g arure 0gs schema as needed by the simuiator Section II-A against the failure logs from LLNL's ASCI white

<Failure logs schema

<Eailure event system. This case study describes the different set oftgsesul
<start.time info>...</starttime info> obtained from our simulator. Please note that even though th
<end.time info>...</starttime info> results are specific to the system in evaluation, we show how

</Failure event we can use this information to select a FT policy for a given

<node failure info . . :
<node id>...</node id set of parame_ters. Th|s case study shows in more details how
<MTTR info>...</MTTR info> our simulator is working.

</node failure info We simulate four space-shared parallel MPI jobs, each hav-

<predictable</predictable ing 125 processes in a 512 node simulated cluster environmen

</Failure logs schema with 12 spare nodes. We use 1 month failure data starting from

7/15/2000 to 8/15/2000 from LLNL's ASCI White system
logs. The default time for each simulated job is 744 hours.
The system logs contain the following information as shown
The algorithm is based on the discrete event simulator Table |
principle and the implementation is Java based. The evants i The information in the LLNL logs do not contain fail-
the simulator can be: (i) a failure event (based on failugs)p ure prediction information. However, the failure predicti
(i) the completion of a running application, (iii) a nodeath information is critical for evaluating proactive FT poks
comes back online after a failure. The simulation algorithiis described in Figure 3. Since this is our case study we
performs a series of steps when each of the above evestperiment with different sets of prediction accuraciesr F
occurs. The algorithm begins with a global schema as itstinpinstance, 50 percent prediction accuracy means that adout 2
The algorithm only receives a failure event at the startiéré failures are predicted in our 1 month failure data contajnin
is no failure event, events like “Repair event” and “comipliet a total of 41 failures. Although the results differs based on
of an application” are not triggered. However, a trace of thghich particular failures are predicted, it is of no partiu
events is created in order to track event dependences whemportance to our discussion. This is due to the fact that we
failure is triggered by the simulator. The failure event esm evaluate failure logs as they are, and it is fair to assumieatha
from the failure logs schema, where the failure events agpecific system may have such failure prediction distrduti
chronologically ordered. We therefore randomly select number of predicted failures
Details about actions generated for each events are dktalbased on the required prediction accuracy during the given
in the following paragraphs. period of the LLNL logs.

E. Simulator’'s Algorithm



TABLE I

significant sample of logs, the researcher is able to see the
VALUES FORPARAMETERS FOR THE FIRST SET OF RESULTS

impact of the FT policy selected. The researcher can form

[ Parameter [ Value | an educated opinion as to what sort of prediction accuracy
Number of applications running |4, each with 125 nodes he/she must have in order to keep the execution overheads
Total active nodes 500 down. For instance, a conclusion from Figure 3 could be dtate
Spare nodes 12 as follows: for longer running applications on our specific
Time to Checkpoint 50 minutes /checkpoint

system, the prediction accuracy should be higher than 60

ﬁ?;:%ﬂngvz\;ﬁgzad to applicat iﬂmrrr:zggfnsq/i;?:t?gﬁomt percent in order to keep the overhead below 50 percent for
False alarm rate not set all applications.
MTTR original values in logs

100

Applicationl
90 \ Application2

| Application3
80 \ Applicationd

Next, we show the application failure distribution pertam 70+

to LLNL logs (during the given period). 607
50 + A

40 4

304

Applicationl
\ Application2
Application3
12 4 Applicationd.
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% application execution overhead
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Failure prediction accuracy

Fig. 3. Application Execution Overhead for Exclusive PtoacFT Policy

Number of failures (Total

29 ~—_— (Based on a 1 Minute Migration Overhead)
0 T T T T T T T |
10 20 30 40 50 60 70 80 90 . . . "
Failure prediction accuracy Figure 4 shows a case where the FT policy is exclusively
reactive. Application overhead in this case depends on the
Fig. 2. Job Failure Statistics for 1 Month number of checkpoints and the overhead per checkpoint.

Figure 4 shows that the best results are obtained when the
) checkpoint interval is not too low and not too high. When
A. First Set of Results the checkpoint interval is too low (like 2 hours), most part
The results in Figure 3 to Figure 6 are based on the ssftthe overhead comes from the checkpoint overhead to the
parameters as shown in Table Il application. When the checkpoint interval is too high (I2&6
The parameters like checkpoint overhead and migratiblurs), most part of the overhead comes from the computation
overhead are based on our knowledge of the existing oveshegallback time. An example conclusion to be drawn from
on our real platforms. Figure 4 can be stated as follows: for our specific logs the
The set of results from Figure 3 to Figure 6 carry the sanieterval between 8 hours to 64 hours is necessary in order to
overhead for “Time to checkpoint” and “Checkpoint overheakkep the application overhead below 20 percent.
to the application”. Efficient checkpoint/restart scherallaw
checkpoint to work in parallel with the computation after i 110 |
certain overhead (which is overhead to the application). 100 | pereions \
the next set of results we change the overheads and anal 90 opicaton?
its effects on application execution. The migration ovexhe 80
is typically small compared to checkpoint overhead for darc 707
systems. This is due to the fact that only one process or ¢ 601 /
OS or one virtual machine needs to be migrated for a predict 207
failure (typically no synchronization between nodes isdezh. 40 ’\
We shall change this parameter also in the next set of resu 307 :
From Figure 3, it is clear that the availability of the foul 207
running applications depend on the failure prediction aacy 7
and also when the failure occurs in its lifetime. This is evitl - . 8 16 5 o bs 26
in the case of 60 percent and 70 percent predication accure
Although 70 percent prediction accuracy should mean betie:
results, it may not necessarily be the case. The simple mea%%. 4. Application Execution Overhead for Exclusive React=T Policy
is that if an application fails toward the end, it loses mamest (Based on a 50 Minutes Checkpoint Overhead
since there is no checkpoint. For a researcher, informatich
as in Figure 3 is quite critical. After selecting the stétisily Figure 5 shows the results for a proactive combined with

%overhead in application execution

Checkpoint interval (hours)



reactive FT policy for application 1. This policy includes
periodic checkpointing and failure prediction with migoest
Figure 5 shows that the best results are obtained when the pre
diction accuracy is over 60 percent and checkpoint inteissal
between 16 and 32. A sample conclusion to be drawn from this

checkpoint overhead=50mins
__Migration overhead = 1min

T

Execution overhead

can be stated as follows: For our specific logs, the predictio ® S0 Ei
accuracy should be over 60 percent and checkpoint interval s
should be between 16 and 32 in order to keep the overhead E;i
below 20 percent. Now if we compare our conclusions for the Des
three different FT policies, we can see that they are carsist i
For instance, we would not like to keep checkpoint interfal o !
2 or 4 hours for 70 percent prediction accuracy because the 30
overhead is more than that of exclusive proactive FT policy. . .50

Failure prediction 70 theckpoint
Further, for the same 70 percent accuracy we also would not accuracy intersal

set very high checkpoint intervals because the advantalje wi

be nullified in the form of rollback time.
Fig.

checkpoint overhead=50mins
Migration overhead = 1min

% execution overhead

% application execution overhead

6.
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Failure prediction so 4§

accuracy
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- 64
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interval (hours)

Fig. 7.
50 minutes Checkpoint Overhead)

Execution Overhead for Proactive Trigger Reactife(Based on a

B. Second Set of Results

Fig. 5. execution overhead for Proactive and reactive Ficydor Job 1

In this section we set different values for our parameters
than for the first set of results. The new values for the

Figure 6 describes the results for application 2. The resuRarameters appear in Table Ill. Specifically, we decredsed t
are similar to Figure 5. The results for application 3 andet agheckpoint overheads 5 times and increased the migration
not shown for the sake of brevity. overhead 50 times.

Figure 7 shows yet another FT policy. This policy as The i_mpac@ of inc_rea_s_ing the migration overhea_d even
described earlier uses checkpoints as triggered by faill#% SO times is not significant when we compare Figure 8
prediction. The downside of this policy is the checkpoidith Figure 3. This implies that migration takes place less
overhead but the plus side is that rollback time is limitedr€quently depending on the failure prediction accuradye T
Comparing Figure 7 with Figure 3, we can see that the imparcqnclusmn from this result is that with less frequent feeky
is approximately the same, although it may not be necegsaril
the same. In these two case, while the checkpoint overhead
(at 50 minutes/checkpoint) is much larger than migration
overhead (1 minute/migration), the rollback time is much

TABLE Il
VALUES FORPARAMETERS FOR THE SECOND SET OF RESULTS

lesser in pro triggered FT policy than Fully proactive FT [ Parameter | Value |

policy. No of applications running 4 each with 125 nodgs
It i lear that without the simulator a researcher Total active nodes 200
IS now ¢ Spare nodes 12

having access to a failure prediction mechanism and check-
point/restart scheme would need a lot more time and effstt ju
to try out various FT policies to ensure the minimum overhead
Moreover, he/she may have to settle for a sub-optimal FT
policy without some kind of a simulator.

Time to Checkpoint

10 minutes /checkpoi

checkpoint overhead to applicat

@0 minutes/checkpoin

—

Migration overhead

50 minute/migration

False alarm rate

not set

MTTR

original values in logg




TABLE IV

migration overhead is an insignificant quantity compared to
VALUES FORPARAMETERS FOR THE SECOND SET OF RESULTS

the rollback time lost. Approximately all the overhead ceme

from the rollback time.

100 4

20 ,\/
80 -|
70 -

Applicationl
\ Application2
Application3
Applicationd

[ Parameter

| Value

Time to Checkpoint

10 minutes /checkpoi

nt

checkpoint overhead to applicat

@0 minutes/checkpoirn

—

Migration overhead

50 minute/migration

checkpoint interval

32 hours

Failure prediction accuracy

50 percent

50 4
40
304

% execution overhead

it depends on the timing of the “Repair event” of the node.
For example, the reduced MTTR values disrupt the original
chronological order of the “Repair event”. This causes node
lists of applications to change and therefore their failpag-
tern changes. The drop in one application’s execution @aath
should be offset by increase in the other. But the trend divera
is that of increasing execution overhead for increasing RTT
values. (Please note that while only MTTR parameter is darie

) ] ] ] ) the results show the total impact, for instance these ealdb
Comparing Figure 9 with Figure 4, we can see the impaghnain checkpoint, migration, rollback overhead)
of the checkpoint overhead. In this set of results, cheakpoi

overhead was reduced to 10 minutes from 50 minutes -
the first set of results. The reduction in execution overhe
is strong for interval between 2 and 16. For instance, ti
execution overhead for job 1 in Figure 4 for 2 hours intervi
is 4 times more than that of Figure 9 with the same interve
This is expected since low interval means more number

checkpoints and therefore more checkpoint overhead to 1 & 2
application. The conclusion drawn from this result is the 01

checkpoint overhead is a significant quantity when the vater 0 ; ; ; ‘ ‘ ‘ ‘ ;
10 20 90

\ —

20
10 o

0 T T T T T
10 20 30 40 50 60

Failure prediction accuracy

70

Fig. 8. Application execution overhead for exclusive ptaacFT policy
(Based on a 50 Minutes Migration Overhead)

70 4
65 -
60 -
55
50 +
45+
40 +
354
30 4
254
20 +

Applicationl
\ Application2
Application3
Applicationd

% execution overhead

1
100

is low. N
% of original MTTR
110 4
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Fig. 9. Application Execution Overhead for Exclusive React=T Policy 5 — ~
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We now show the impact of the MTTR (Mean time tc
repair) on ap.phcatlpr.]’S execution overhead. Until now, ngg. 11. Application Execution Overhead for Exclusive Re@cFT Policy
have been using original MTTR values from the LLNL logswith 4 Spare Nodes
we now describe the impact of modified MTTR on the
applications. Table IV shows the static parameters for thisFigure 11 shows the impact of MTTR reduction when the
operation. Specifically, we set 32 hours for our checkpoinumber of spare nodes is increased to 4. The increase in the
interval and 50 percent as our prediction accuracy. number of spare nodes reduces the execution overhead since
Figure 10 shows a scenario where there are no spare nodgglications have to wait less for the “Repair event”.
As can be seen from the figure, as the MTTR increases thelo summarize, we performed the case study based on
execution overheads generally increase. The reason far dtd NL's ASCI white system using our simulator. We described
of execution overhead in some cases is not surprising sinem sets of results. The first set of results evaluated differ



TABLE V 100

PARAMETERS FOR REAL PLATFORM AND SIMULATION E 90
2 &
[ Parameter | Value | L 50
Node count 16 £ 6
Time to Checkpoint 90 seconds /checkpojnt T so-
checkpoint overhead to applicat{@0 seconds/checkpoint E 40
Restart latency 1 minute/restart $ 30 [resmwerre
Migration overhead 1 minute/migration g 0 NfroaciveReactiveReal
Failure prediction accuracy simulated g ProactiveReacive-
T imulation
2 o T T 1
195 390 780 1560
standard policies against the set of parameters shown in Checkpoint interval (seconds)

ble 1l. The best results are obtained when we used “Proactive _ _ . _
combined with reactive FT policy”. The second set of results Fig. 13. Real vs Simulation for 32 nodes (Failure at 20 Migjte
were meant for tuning the various parameters and evaluated
exclusive proactive and exclusive reactive FT policiesrasja
the set of parameters shown in Table Ill. Further, the sesehd

TABLE VI
PARAMETERS FOR REAL PLATFORM AND SIMULATION

of results also evaluated a “proactive combined with rgacti [ Parameter | Value |
FT policy” with reduced values of MTTR and with different [Node count 32
number of spare nodes. This completes our case study for the{Time to Checkpoint __|150 seconds /checkpojnt
simulator. In the next section we present the validationwf o |checkpoint overhead to applicat|éh0 seconds/checkpoint
simulator R_estar_t latency 4 m!nute/re_start_
) Migration overhead 1 minute/migration
V. VALIDATION OF THE SIMULATOR Failure prediction accuracy simulated

We evaluated “exclusive reactive FT", “proactive combined

with reactive FT” policies on re_zal platform. Our p_latformrc—o The checkpoint and migration overheads are the average
sists of a 40 nodes cluster, with each node having 768MB Qferheads for BLCR and Live migration respectively on our
memory. For our reactive FT policy, we use BLCR checkpoinfiaiform for 32 nodes as shown in Table VI. Figure 13 shows
module. For our proactive FT policy we use virtual machineg, o comparison between real and simulated results for 32
specifically Xen [23], and their live migration [24] capatyl hq4es. Since the parameters for simulation have average val
For our real platform, we do not have failure logs or failurges for checkpoint overheads, restart latencies and ritgrat
statistics, and therefore we simulate failures to evaltlée \erheads, the results can not entirely match that of thie rea
impact of FT policies. _ _ ones. For instance, we took restart latency as 4 minutes in
We executed different configurations of the HPCC benclyy, simylation. But it varied back and forth between differe

mark application suite. The 16 and 32 node experiments usediarts (from 1 to 8 minutes). The error between real and
HPCC problem sizes of 9,000 and 10,700 respectively. TablegWniated in this case does not exceed 8 percent.
shows various parameters for our platform of 16 nodes.

VI. CONCLUSION
80

é 75 This document presents a simulator framework for the
0 gg: evaluation of fault tolerance policies. We argued that éher
?j 60 *\ is no one-size-fits-all FT policy, and the challenge lies in
S 55 . . . . .

£ 50+ finding/evaluating a policy that provides the best resultslie

= jg: application and execution platform. To that end, we presgnt

E 35 our simulation architecture and algorithm. We presented a
e B NS case study based on the evaluation of standard FT policies
§ 207\ rctverrescive. using failure logs taken from LLNL's ASCI White system.

3 7 L Simutation Furthermore, we illustrated how the simulator can be used
g g* | | | to draw conclusions about appropriate FT policies for an
195 390 780 1560 application with a given dependability threshold. For amste,

Checkpoint interval (seconds) our case study results indicated that the most appropriate
FT policy for the ASCI White system is a hybrid approach,
Fig. 12. Real vs Simulation for 16 Nodes (Failure at 20 Misyte “proactive combined with reactive”.

The FT simulator complements existing work, such as
Figure 12 shows the comparison between real and simulate&lL-MPI [8], by providing a tool for off-line studies of FT
results for 16 nodes. The error between the real and sintulaflicies. This eliminates the overhead and added comglexit
results does not exceed 4 percent for both policies. associated with investigations that rely on actual exeoutbr



FT policy evaluation.

El

In order to evaluate our simulator we compared results
from the simulator with experimental results from a 32-
node compute cluster. This comparison showed that for this
platform, results from the simulator are comparable to Itesul1®!
from experimentation.

The current framework is based on a default reliability

profile taken from failure logs from LLNLs ASCI White
However, this default profile can be replaced with othewufail
rates by using alternate logs. This capability enablestinys
of FT policies on different virtual platforms, with diffené
availability characteristics. This capability is inteting espe-
cially since the different execution platforms have difet

" [11]

[12]

[13]

characteristics based on their hardware, their scale, lagid g
available fault tolerance mechanisms (e.g. process nograt
or checkpoint/restart). For computing centers that maintd!5]
failure logs, it is also possible to provide the platform’s
characteristics to researchers that can then run simoatio
with different FT policies during the exploration phase lo¢t [16]
research project without having to occupy the real hardware
The current framework has been validated by comparify]

simulation output with experimental results taken fromhbo
16-node and 32-node clusters. In the worst case, the res

from the simulator differ to experimental results by 8 patce
However, results at that scale cannot be assumed as refareséff!
tive for large-scale systems. On the other hand, it is difficu
access availability statistics for large scale systemsessuch [20]
logs are often considered to be sensitive data. However, we
plan to continue the validation effort using different fbains

for which we are creating such logs. We also plan to use the

simulator for the evaluation of new FT strategies.
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